Premium
Hierarchical Parcel‐Swapping: An efficient mixing model for turbulent reactive flows
Author(s) -
Starick Tommy,
Schmidt Heiko
Publication year - 2019
Publication title -
pamm
Language(s) - English
Resource type - Journals
ISSN - 1617-7061
DOI - 10.1002/pamm.201900492
Subject(s) - turbulence , advection , statistical physics , scalar (mathematics) , scaling , mixing (physics) , scale (ratio) , tree (set theory) , mathematics , flow (mathematics) , mechanics , physics , geometry , thermodynamics , mathematical analysis , quantum mechanics
Hierarchical Parcel‐Swapping (HiPS) developed by A.R. Kerstein [J. Stat. Phys. 153, 142‐161 (2013)] is a computationally efficient and novel model for the effects of turbulence on time‐evolving, diffusive scalar fields. The characteristic feature of HiPS is the interpretation of the one‐dimensional flow domain or a state space as a binary tree structure. Every tree level corresponds to a specific length and time scale, which is based on a turbulence inertial range scaling. The state variables reside at the base of the tree and are interpreted as fluid parcels. The effects of turbulent advection are represented by stochastic swaps of sub‐trees at rates determined by turbulent time scales associated with the sub‐trees. The mixing of adjacent fluid parcels is done at rates consistent with the prevailing diffusion time scales. In this work, we investigate the influence of turbulent time scale variations on an isothermal series‐parallel reaction scheme. The production of a desired chemical species is evaluated by means of a defined selectivity and is strongly affected by the underlying mixing time scales.