z-logo
Premium
A posteriori error analysis for the mixed Laplace eigenvalue problem: investigations for the BDM‐element
Author(s) -
Bertrand Fleurianne,
Boffi Daniele,
Stenberg Rolf
Publication year - 2019
Publication title -
pamm
Language(s) - English
Resource type - Journals
ISSN - 1617-7061
DOI - 10.1002/pamm.201900155
Subject(s) - estimator , mathematics , eigenvalues and eigenvectors , finite element method , degree of a polynomial , a priori and a posteriori , laplace transform , extension (predicate logic) , polynomial , variable (mathematics) , mixed finite element method , mathematical optimization , mathematical analysis , statistics , computer science , philosophy , physics , epistemology , quantum mechanics , thermodynamics , programming language
A posteriori error estimates for the mixed numerical approximation of the Laplace eigenvalue problem can be derived using a reconstruction in the standard H 0 1 ‐conforming space for the primal variable of the mixed problem. In the case of Raviart–Thomas finite elements of arbitrary polynomial degree the resulting error estimator constitutes a guaranteed upper bound for the error and is shown to be local efficient. This paper shows that the extension for the BDM‐element is not straightforward.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here