z-logo
Premium
An estimate on the non‐real spectrum of a singular indefinite Sturm‐Liouville operator
Author(s) -
Behrndt Jussi,
Gsell Bernhard,
Schmitz Philipp,
Trunk Carsten
Publication year - 2017
Publication title -
pamm
Language(s) - English
Resource type - Journals
ISSN - 1617-7061
DOI - 10.1002/pamm.201710397
Subject(s) - sturm–liouville theory , spectrum (functional analysis) , operator (biology) , radius , mathematics , mathematical analysis , pure mathematics , mathematical physics , physics , chemistry , quantum mechanics , computer science , boundary value problem , biochemistry , computer security , repressor , transcription factor , gene
It will be shown with the help of the Birman‐Schwinger principle that the non‐real spectrum of the singular indefinite Sturm‐Liouville operator sgn(·)(−d 2 /d x 2  +  q ) with a real potential q  ∈  L 1  ∩  L 2 is contained in a circle around the origin with radius ‖ q ‖ L 1 2 . (© 2017 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim)

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom