z-logo
Premium
Bounds on the Non‐real Spectrum of a Singular Indefinite Sturm‐Liouville Operator on ℝ
Author(s) -
Behrndt Jussi,
Schmitz Philipp,
Trunk Carsten
Publication year - 2016
Publication title -
pamm
Language(s) - English
Resource type - Journals
ISSN - 1617-7061
DOI - 10.1002/pamm.201610429
Subject(s) - sturm–liouville theory , eigenvalues and eigenvectors , spectrum (functional analysis) , mathematics , operator (biology) , real line , integrable system , simple (philosophy) , weight function , function (biology) , singular value , pure mathematics , mathematical analysis , chemistry , physics , quantum mechanics , philosophy , biochemistry , epistemology , repressor , evolutionary biology , biology , transcription factor , gene , boundary value problem
A simple explicit bound on the absolute values of the non‐real eigenvalues of a singular indefinite Sturm‐Liouville operator on the real line with the weight function sgn(·) and an integrable, continuous potential q is obtained. (© 2016 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim)

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here