z-logo
Premium
Bounds on the Non‐real Spectrum of a Singular Indefinite Sturm‐Liouville Operator on ℝ
Author(s) -
Behrndt Jussi,
Schmitz Philipp,
Trunk Carsten
Publication year - 2016
Publication title -
pamm
Language(s) - English
Resource type - Journals
ISSN - 1617-7061
DOI - 10.1002/pamm.201610429
Subject(s) - sturm–liouville theory , eigenvalues and eigenvectors , spectrum (functional analysis) , mathematics , operator (biology) , real line , integrable system , simple (philosophy) , weight function , function (biology) , singular value , pure mathematics , mathematical analysis , chemistry , physics , quantum mechanics , philosophy , biochemistry , epistemology , repressor , evolutionary biology , biology , transcription factor , gene , boundary value problem
A simple explicit bound on the absolute values of the non‐real eigenvalues of a singular indefinite Sturm‐Liouville operator on the real line with the weight function sgn(·) and an integrable, continuous potential q is obtained. (© 2016 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim)

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom