z-logo
Premium
Boundary value problems in the theory of thermoporoelasticity for materials with double porosity
Author(s) -
Svanadze Merab
Publication year - 2014
Publication title -
pamm
Language(s) - English
Resource type - Journals
ISSN - 1617-7061
DOI - 10.1002/pamm.201410151
Subject(s) - uniqueness , porosity , boundary value problem , mathematical analysis , mathematics , boundary (topology) , darcy's law , thermal conduction , porous medium , physics , materials science , thermodynamics , composite material
In this paper the linear quasi‐static theory of thermoelasticity for solids with double porosity is considered. The system of equations of this theory is based on the equilibrium equations for solids with double porosity, conservation of fluid mass, constitutive equations, Darcy's law for materials with double porosity and Fourier's law for heat conduction. The basic internal and external boundary value problems (BVPs) of steady vibrations are formulated. The uniqueness and existence theorems for classical solutions of the above mentioned BVPs are proved by means of the potential method (boundary integral equation method) and the theory of singular integral equations. (© 2014 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim)

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here