z-logo
Premium
Shaking table tests of a model‐scale building with 2DOF pendulum mass damper
Author(s) -
Majcher Krzysztof
Publication year - 2012
Publication title -
pamm
Language(s) - English
Resource type - Journals
ISSN - 1617-7061
DOI - 10.1002/pamm.201210106
Subject(s) - earthquake shaking table , structural engineering , pendulum , vibration , reduction (mathematics) , tuned mass damper , damper , work (physics) , scale model , finite element method , engineering , physics , acoustics , mathematics , mechanical engineering , aerospace engineering , geometry
In this paper, the numerical and experimental studies of a tall building's model with 2DOF pendulum mass damper (PMD) are considered. It is assumed that the model excitation is in the form of horizontal and/or torsional motion of the ground caused by earthquake. The construction consists of the main system (tall building's model) and a double pendulum mass damper, which is attuned to the first (bending) and the second (torsional) eigenfrequencies of the main structure. The analysis focuses on reduction of structure vibration caused by horizontal or torsional component of ground motions. Therefore, results presented in this work show efficiency of 2DOF PMD for vibration reduction. The numerical analysis of the problem is performed with using COSMOS/M system (a FEM numerical model is defined), while experimental analysis is carried out on a physical model‐scale building with 2DOF PMD. Model consists of twenty five recurrent storeys (height 2.5m) with a PMD located on the highest one. Shaking table device is used to simulate an earthquake excitation in horizontal and torsional component, independently. (© 2012 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim)

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here