z-logo
Premium
Buckling of Carbon Nanotubes: a Molecular Static Approach
Author(s) -
Schwarzbart Michael,
Steindl Alois,
Troger Hans
Publication year - 2010
Publication title -
pamm
Language(s) - English
Resource type - Journals
ISSN - 1617-7061
DOI - 10.1002/pamm.201010008
Subject(s) - buckling , carbon nanotube , axial symmetry , materials science , shell (structure) , boundary value problem , hessian matrix , carbon fibers , structural engineering , euler's formula , nonlinear system , composite material , mathematics , physics , mathematical analysis , engineering , composite number , quantum mechanics
Axially loaded cylindrical continuous shells collapse either globally like a rod (Euler buckling), or locally (local shell wall buckling), depending on the ratio of the length of the shell over the diameter [1]. There are many published investigations, which show that this behaviour is also true for Carbon Nanotubes CNTs [2]. In this work a systematic analysis of the problem is given in the framework of molecular statics. This approach has the advantage of taking care of the discrete structure of CNTs. The covalent bonds of the hexagonal carbon network are modelled as nonlinear springs, and the compressive load is applied quasistatically, excluding follower forces. The software package LAMMPS [3] offers the AIREBO potential [4] and is suitable for describing CNTs. To identify the stability boundary in the parameter plane, LAMMPS is extended to compute the definiteness of the Hessian. (© 2010 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim)

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here