z-logo
Premium
A hybrid approach to 3‐level FETI
Author(s) -
Klawonn Axel,
Rheinbach Oliver
Publication year - 2008
Publication title -
pamm
Language(s) - English
Resource type - Journals
ISSN - 1617-7061
DOI - 10.1002/pamm.200810841
Subject(s) - feti , domain decomposition methods , mortar methods , lagrange multiplier , generalized minimal residual method , mathematics , finite element method , preconditioner , computer science , mathematical optimization , iterative method , physics , thermodynamics
Finite Element Tearing and Interconnecting (FETI) methods are nonoverlapping domain decomposition methods which have been proven to be very robust and parallel scalable for a class of elliptic partial differential equations. These methods are also called dual domain decomposition methods since the continuity accross the subdomain boundaries is enforced by Lagrange multipliers and, after elimination of the primal variables, the remaining Schur complement system is solved iteratively in the Lagrange multiplier space using a Krylov space method. Domain decomposition methods iterating on the primal variables are called primal substructuring methods. FETI and FETI–DP methods are different members of the family of dual domain decomposition methods. Their standard versions have in common that the local subproblems and a small global problem are solved exactly by a direct method, essentially representing two different levels within the algorithm. Several extensions of dual and primal iterative substructuring beyond two levels have been proposed in the past, see, e.g., [7] for FETI–DP, and, e.g., Tu [13,12,11] or [9] and [1] for BDDC. In the present article, a hybrid FETI/FETI–DP method is considered and some numerical results are presented. It is noted that independently, there is ongoing research on hybrid FETI methods by Jungho Lee of the Courant Institute. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here