Premium
Helmholtz equation outside an open arc in a plane with a mixed boundary condition
Author(s) -
Kolybasova Valentina,
Krutitskii Pavel
Publication year - 2007
Publication title -
pamm
Language(s) - English
Resource type - Journals
ISSN - 1617-7061
DOI - 10.1002/pamm.200701132
Subject(s) - helmholtz equation , mathematics , boundary value problem , mixed boundary condition , mathematical analysis , robin boundary condition , fredholm integral equation , poincaré–steklov operator , integral equation , free boundary problem , electric field integral equation , cauchy boundary condition , dirichlet boundary condition
A boundary value problem for the Helmholtz equation outside an open arc in a plane is studied with mixed boundary conditions. In doing so, the Dirichlet condition is specified on one side of the open arc and the boundary condition of the third kind is specified on the other side of the open arc. We consider non‐propagative Helmholtz equation, real‐valued solutions of which satisfy maximum principle. By using the potential theory the boundary value problem is reduced to a system of singular integral equations with additional conditions. By regularization and subsequent transformations, this system is reduced to a vector Fredholm equation of the second kind and index zero. It is proved that the obtained vector Fredholm equation is uniquely solvable. Therefore the integral representation for a solution of the original boundary value problem is obtained. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)