z-logo
Premium
A complete classification of bifurcation diagrams of a p ‐Laplacian Dirichlet problem
Author(s) -
Lee ShinYi,
Liui JongYi,
Wang ShinHwa,
Yei ChiouPing
Publication year - 2007
Publication title -
pamm
Language(s) - English
Resource type - Journals
ISSN - 1617-7061
DOI - 10.1002/pamm.200701122
Subject(s) - bifurcation , laplace operator , constant (computer programming) , mathematics , bifurcation diagram , dirichlet distribution , p laplacian , nonlinear system , combinatorics , physics , pure mathematics , mathematical analysis , mathematical physics , computer science , quantum mechanics , boundary value problem , programming language
We study the bifurcation diagrams of (classical) positive solutions u with | u | ∞ ∈ (0, ∞) of the p ‐Laplacian Dirichlet problem ( φ p ( u ′( x )))′ + λf q ( u ( x ))) = 0, –1 ≤ x ≤ 1, u (–1) = 0 = u (1), where p > 1, φ p ( y ) = | y | p –2 y , ( φ p ( u ′))′ is the one‐dimensional p ‐Laplacian, λ > 0 is a bifurcation parameter, and the nonlinearity f q ( u ) = |1 – u | q is defined on [0, ∞) with constant q > 0. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom