Premium
Material‐Force‐Based Refinement Indicators in Adaptive Strategies
Author(s) -
Zimmermann Dominik,
Miehe Christian
Publication year - 2006
Publication title -
pamm
Language(s) - English
Resource type - Journals
ISSN - 1617-7061
DOI - 10.1002/pamm.200610191
Subject(s) - finite element method , spurious relationship , discretization , plasticity , elasticity (physics) , momentum (technical analysis) , adaptive mesh refinement , computer science , tensor (intrinsic definition) , mathematics , mechanics , mathematical optimization , mathematical analysis , geometry , physics , structural engineering , computational science , engineering , finance , economics , thermodynamics , machine learning
A material‐force‐based refinement indicator for adaptive finite element strategies for finite elasto‐plasticity is proposed. Starting from the local format of the spatial balance of linear momentum, a dual material counterpart in terms of Eshelby's energy‐momentum tensor is derived. For inelastic problems, this material balance law depends on the material gradient of the internal variables. In a global format the material balance equation coincides with an equilibrium condition of material forces. For a homogeneous body, this condition corresponds to vanishing discrete material nodal forces. However, due to insufficient discretization, spurious material forces occur at the interior nodes of the finite element mesh. These nodal forces are used as an indicator for mesh refinement. Assigning the ideas of elasticity, where material forces have a clear energetic meaning, the magnitude of the discrete nodal forces is used to define a relative global criterion governing the decision on mesh refinement. Following the same reasoning, in a second step a criterion on the element level is computed which governs the local h‐adaptive refinement procedure. The mesh refinement is documented for a representative numerical example of finite elasto‐plasticity. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)