z-logo
Premium
Second‐order sufficient optimality conditions for the optimal control of instationary Navier‐Stokes equations
Author(s) -
Tröltzsch Fredi,
Wachsmuth Daniel
Publication year - 2004
Publication title -
pamm
Language(s) - English
Resource type - Journals
ISSN - 1617-7061
DOI - 10.1002/pamm.200410295
Subject(s) - order (exchange) , subspace topology , function (biology) , mathematics , optimal control , navier–stokes equations , control (management) , mathematical optimization , control theory (sociology) , mathematical analysis , computer science , physics , compressibility , economics , artificial intelligence , finance , evolutionary biology , biology , thermodynamics
In this article sufficient optimality conditions are established for optimal control of evolutionary Navier‐Stokes equations. The second‐order condition requires coercivity of the Lagrange function on a suitable subspace together with first‐order necessary conditions. It ensures local optimality of a reference function in a L s ‐neighborhood, whereby the underlying analysis allows to use weaker norms than L ∞ . (© 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom