z-logo
Premium
Interactive computing methods for aeroelastic analysis of turbomachinery
Author(s) -
Dumitrache Alexandru
Publication year - 2004
Publication title -
pamm
Language(s) - English
Resource type - Journals
ISSN - 1617-7061
DOI - 10.1002/pamm.200410261
Subject(s) - inviscid flow , laminar flow , turbomachinery , linearization , discretization , boundary layer , mechanics , aeroelasticity , turbulence , flow (mathematics) , biharmonic equation , boundary value problem , mathematics , physics , mathematical analysis , aerodynamics , nonlinear system , quantum mechanics
An interaction viscous‐inviscid method for efficiently computing steady and unsteady viscous flows is presented. The inviscid domain is modeled using a finite element discretization of the full potential equation. The viscous region is modeled using a finite difference boundary layer technique. The two regions are simultaneously coupled using the transpiration approach. A time linearization technique is applied to this interactive method. For unsteady flows, the fluid is assumed to be composed of a mean or steady flow plus a harmonically varying small unsteady disturbance. Numerically exact nonreflecting boundary conditions are used for the far field conditions. Results for some steady and unsteady, laminar and turbulent flow problems are compared to linearized Navier‐Stokes or time‐marching boundary layer methods. (© 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here