Premium
Dynamische Modellierung hybrider Knickarmroboter unter Berücksichtigung
Author(s) -
Mitterhuber Ralph,
Gattringer Hubert,
Bremer Hartmut
Publication year - 2004
Publication title -
pamm
Language(s) - German
Resource type - Journals
ISSN - 1617-7061
DOI - 10.1002/pamm.200410062
Subject(s) - physics
Die dynamische Modellbildung von kettenförmigen Mehrkörpersystemen, bestehend aus starren und elastischen Einzelkörpern, führt mit zunehmender Anzahl von Körpern rasch zu sehr großen, partiellen Bewegungsgleichungen. Unter der Annahme von linearisierbar kleinen elastischen Deformationen kann mittels Ritzansätzen auf eine Beschreibung mit gewöhnlichen Differentialgleichungen übergegangen werden. Bei der Herleitung der Bewegungsgleichungen ist es zielführend, das System geeignet zu strukturieren, um so interpretierbare Zwischenergebnisse zu erhalten. Diese Vorgangsweise führt zur Verwendung der Projektionsgleichung, einer synthetischen Methode, welche Impuls‐ und Drallbeziehungen der Einzelkörper unter Elimination der Zwangskräfte in den Raum der Minimalgeschwindigkeiten projiziert. Unter Berücksichtigung der Struktur des betrachteten Systems lassen sich zudem einzelne Körper zu Gruppen, sogenannten Subsystemen, mit entsprechenden beschreibenden Geschwindigkeiten zusammenfassen. Die Dimensionen der resultierenden Massenmatrix des Gesamtsystems entsprechen der Dimension des Minimalgeschwindigkeitsvektors. Der Rechenaufwand zur Invertierung der Massenmatrix und somit zur numerischen Lösung explodiert förmlich mit der kubischen Ordnung der Freiheitsgrade. Aufgrund der kettenförmigen Struktur des elastischen Mehrkörpersystems lässt sich jedoch ein einfach strukturiertes Verfahren angeben, bei dem nur Matrizen der Dimensionen der Relativfreiheitsgrade der Subsysteme zu invertieren sind. (© 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)