
Water Dynamics in Highly Concentrated Salt Solutions: A Multi‐Nuclear NMR Approach
Author(s) -
RezaeiGhaleh Nasrollah
Publication year - 2022
Publication title -
chemistryopen
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.644
H-Index - 29
ISSN - 2191-1363
DOI - 10.1002/open.202200080
Subject(s) - biomolecule , chemistry , molecule , chloride , ion , alkali metal , chemical physics , molecular dynamics , salt (chemistry) , computational chemistry , organic chemistry , biochemistry
Living cells often contain compartments with high concentration of charged biomolecules. A key question pertinent to the function of biomolecules is how water dynamics are affected by interaction with charged molecules. Here, we study the dynamical behavior of water in an extreme condition, that is, in saturated salt solutions, where nearly all water molecules are located within the first hydration layer of ions. To facilitate disentangling the effects of cations and anions, our study is focused on alkali chloride solutions. Following a multi‐nuclear NMR approach enabling direct monitoring of protons and the quadrupolar nuclei 7 Li, 17 O, 23 Na, 35 Cl, 87 Rb and 133 Cs, we investigate how the translational and rotational mobility of water molecules, chloride anion and corresponding cations are affected within the constrained environment of saturated solutions. Our results indicate that water molecules preserve a large level of mobility within saturated alkali chloride solutions that is significantly independent of adjacent ions.