Precursors for Atmospheric Plasma‐Enhanced Sintering: Low‐Temperature Inkjet Printing of Conductive Copper
Author(s) -
Knapp Caroline E.,
Metcalf Elizabeth A.,
Mrig Shreya,
SanchezPerez Clara,
Douglas Samuel. P.,
Choquet Patrick,
Boscher Nicolas D.
Publication year - 2018
Publication title -
chemistryopen
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.644
H-Index - 29
ISSN - 2191-1363
DOI - 10.1002/open.201800131
Subject(s) - copper , monomer , sintering , atmospheric pressure , chemistry , thermal decomposition , denticity , yield (engineering) , infrared spectroscopy , thermogravimetric analysis , analytical chemistry (journal) , decomposition , gravimetric analysis , mass spectrometry , crystal structure , nuclear chemistry , crystallography , materials science , organic chemistry , polymer , metallurgy , chromatography , oceanography , geology
Bidentate diamine and amino‐alcohol ligands have been used to form solid, water‐soluble, and air‐stable monomeric copper complexes of the type [Cu(NH 2 CH 2 CH(R)Y) 2 (NO 3 ) 2 ] ( 1 , R=H, Y=NH 2 ; 2 , R=H, Y=OH; 3 , R=Me, Y=OH). The complexes were characterized by elemental analysis, mass spectrometry, infrared spectroscopy, thermal gravimetric analysis, and single‐crystal X‐ray diffraction. Irrespective of their decomposition temperature, precursors 1 – 3 yield highly conductive copper features [1.5×10 −6 Ω m (±5×10 −7 Ω m)] upon atmospheric‐pressure plasma‐enhanced sintering.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom