Premium
Optimal spatial field control for controlled release
Author(s) -
Kishida Masako,
Pack Daniel W.,
Braatz Richard D.
Publication year - 2015
Publication title -
optimal control applications and methods
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.458
H-Index - 44
eISSN - 1099-1514
pISSN - 0143-2087
DOI - 10.1002/oca.2159
Subject(s) - field (mathematics) , computer science , optimal control , mathematical optimization , spatial analysis , spatial frequency , partial differential equation , optimization problem , series (stratigraphy) , algorithm , control (management) , control theory (sociology) , mathematics , artificial intelligence , physics , pure mathematics , mathematical analysis , paleontology , statistics , optics , biology
Summary Most distributed parameter control problems involve manipulation within the spatial domain. Such problems arise in a variety of applications including epidemiology, tissue engineering, and cancer treatment. This paper proposes an approach to solve a state‐constrained spatial field control problem that is motivated by a biomedical application. In particular, the considered manipulation over a spatial field is described by partial differential equations (PDEs) with spatial frequency constraints. The proposed optimization algorithm for tracking a reference spatial field combines three‐dimensional Fourier series, which are truncated to satisfy the spatial frequency constraints, with exploitation of structural characteristics of the PDEs. The computational efficiency and performance of the optimization algorithm are demonstrated in a numerical example. In the example, the spatial tracking error is shown to be almost entirely due to the limitation on the spatial frequency of the manipulated field. The numerical results suggest that the proposed optimal control approach has promise for controlling the release of macromolecules in tissue engineering applications.