Premium
A Hybrid Finite Volume Method for Advection Equations and Its Applications in Population Dynamics
Author(s) -
Yang Chang,
Tine Léon Matar
Publication year - 2017
Publication title -
numerical methods for partial differential equations
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.901
H-Index - 61
eISSN - 1098-2426
pISSN - 0749-159X
DOI - 10.1002/num.22134
Subject(s) - finite volume method , mathematics , population , context (archaeology) , partial differential equation , term (time) , numerical analysis , advection , mathematical analysis , physics , mechanics , paleontology , demography , quantum mechanics , thermodynamics , sociology , biology
We present in this article a very adapted finite volume numerical scheme for transport type‐equation. The scheme is an hybrid one combining an anti‐dissipative method with down‐winding approach for the flux (Després and Lagoutière, C R Acad Sci Paris Sér I Math 328(10) (1999), 939–944; Goudon, Lagoutière, and Tine, Math Method Appl Sci 23(7) (2013), 1177–1215) and an high accurate method as the WENO5 one (Jiang and Shu, J Comput Phys 126 (1996), 202–228). The main goal is to construct a scheme able to capture in exact way the numerical solution of transport type‐equation without artifact like numerical diffusion or without “stairs” like oscillations and this for any regular or discontinuous initial distribution. This kind of numerical hybrid scheme is very suitable when properties on the long term asymptotic behavior of the solution are of central importance in the modeling what is often the case in context of population dynamics where the final distribution of the considered population and its mass preservation relation are required for prediction. © 2017 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 33: 1114–1142, 2017