z-logo
Premium
A posteriori error estimate for finite volume element method of the parabolic equations
Author(s) -
Chen Chuanjun,
Zhao Xin
Publication year - 2017
Publication title -
numerical methods for partial differential equations
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.901
H-Index - 61
eISSN - 1098-2426
pISSN - 0749-159X
DOI - 10.1002/num.22085
Subject(s) - estimator , a priori and a posteriori , mathematics , residual , finite element method , partial differential equation , error analysis , mathematical optimization , mathematical analysis , statistics , algorithm , thermodynamics , philosophy , physics , epistemology
In this article, residual‐type a posteriori error estimates are studied for finite volume element (FVE) method of parabolic equations. Residual‐type a posteriori error estimator is constructed and the reliable and efficient bounds for the error estimator are established. Residual‐type a posteriori error estimator can be used to assess the accuracy of the FVE solutions in practical applications. Some numerical examples are provided to confirm the theoretical results. © 2016 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 33: 259–275, 2017

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom