z-logo
Premium
Projection stabilized nonconforming finite element methods for the stokes problem
Author(s) -
Achchab Boujemâa,
Agouzal Abdellatif,
Bouihat Khalid,
Majdoubi Adil,
Souissi Ali
Publication year - 2017
Publication title -
numerical methods for partial differential equations
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.901
H-Index - 61
eISSN - 1098-2426
pISSN - 0749-159X
DOI - 10.1002/num.22083
Subject(s) - mathematics , stokes problem , estimator , finite element method , a priori and a posteriori , projection (relational algebra) , discretization , partial differential equation , error analysis , partial derivative , element (criminal law) , mathematical analysis , algorithm , statistics , philosophy , physics , epistemology , political science , law , thermodynamics
In this article we study a projection‐stabilized nonconforming finite element discretization of the Stokes problem. We present a priori error analysis and give a recovery‐based a posteriori error estimator for the considered problem. Numerical results illustrate the theoretical performance of the error estimator. © 2016 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 33: 218–240, 2017

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom