z-logo
Premium
A C 0 interior penalty method for a singularly‐perturbed fourth‐order elliptic problem on a layer‐adapted mesh
Author(s) -
Franz Sebastian,
Roos HansGörg,
Wachtel Andreas
Publication year - 2014
Publication title -
numerical methods for partial differential equations
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.901
H-Index - 61
eISSN - 1098-2426
pISSN - 0749-159X
DOI - 10.1002/num.21839
Subject(s) - mathematics , convergence (economics) , polygon mesh , order (exchange) , mathematical analysis , upper and lower bounds , penalty method , geometry , mathematical optimization , finance , economics , economic growth
We analyze the convergence of a continuous interior penalty (CIP) method for a singularly perturbed fourth‐order elliptic problem on a layer‐adapted mesh. On this anisotropic mesh, we prove under reasonable assumptions uniform convergence of almost order k  − 1 for finite elements of degree k  ≥ 2. This result is of better order than the known robust result on standard meshes. A by‐product of our analysis is an analytic lower bound for the penalty of the symmetric CIP method. Finally, our convergence result is verified numerically. © 2013 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 30: 838–861, 2014

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom