Premium
An efficient ETD method for pricing American options under stochastic volatility with nonsmooth payoffs
Author(s) -
Yousuf M.,
Khaliq A.Q.M.
Publication year - 2013
Publication title -
numerical methods for partial differential equations
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.901
H-Index - 61
eISSN - 1098-2426
pISSN - 0749-159X
DOI - 10.1002/num.21780
Subject(s) - stochastic volatility , volatility (finance) , mathematics , partial derivative , euler's formula , partial differential equation , exponential function , mathematical optimization , econometrics , mathematical analysis
Based on Cox and Matthews Exponential Time Differencing (ETD) approach, a fourth–order strongly–stable method having real distinct poles is developed and applied to solve American options under stochastic volatility with nonsmooth payoffs. A computationally efficient version of the method is constructed using partial fraction splitting technique. This approach requires to solve several backward Euler‐type linear systems at each time step. Numerical experiments are presented to demonstrate the computational efficiency, accuracy, and reliability of the method. © 2013 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2013