z-logo
Premium
Error estimates of expanded mixed methods for optimal control problems governed by hyperbolic integro‐differential equations
Author(s) -
Hou Tianliang
Publication year - 2013
Publication title -
numerical methods for partial differential equations
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.901
H-Index - 61
eISSN - 1098-2426
pISSN - 0749-159X
DOI - 10.1002/num.21771
Subject(s) - mathematics , piecewise , finite element method , discretization , hyperbolic partial differential equation , quadratic equation , partial differential equation , optimal control , mathematical analysis , mathematical optimization , geometry , physics , thermodynamics
In this article, we investigate the L ∞ ( L 2 ) ‐error estimates of the semidiscrete expanded mixed finite element methods for quadratic optimal control problems governed by hyperbolic integrodifferential equations. The state and the costate are discretized by the order k Raviart‐Thomas mixed finite element spaces, and the control is approximated by piecewise polynomials of order k ( k ≥ 0). We derive error estimates for both the state and the control approximation. Numerical experiments are presented to test the theoretical results. © 2013 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2013

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom