z-logo
Premium
A finite difference method for the wide‐angle “parabolic” equation in a waveguide with downsloping bottom
Author(s) -
Antonopoulou Dimitra C.,
Dougalis Vassilios A.,
Zouraris Georgios E.
Publication year - 2013
Publication title -
numerical methods for partial differential equations
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.901
H-Index - 61
eISSN - 1098-2426
pISSN - 0749-159X
DOI - 10.1002/num.21762
Subject(s) - mathematics , mathematical analysis , boundary value problem , finite difference , boundary (topology) , dirichlet boundary condition , partial differential equation
We consider the third‐order wide‐angle “parabolic” equation of underwater acoustics in a cylindrically symmetric fluid medium over a bottom of range‐dependent bathymetry. It is known that the initial‐boundary‐value problem for this equation may not be well posed in the case of (smooth) bottom profiles of arbitrary shape, if it is just posed e.g. with a homogeneous Dirichlet bottom boundary condition. In this article, we concentrate on downsloping bottom profiles and propose an additional boundary condition that yields a well‐posed problem, in fact making it L 2 ‐conservative in the case of appropriate real parameters. We solve the problem numerically by a Crank–Nicolson‐type finite difference scheme, which is proved to be unconditionally stable and second‐order accurate and simulates accurately realistic underwater acoustic problems. © 2012 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2013

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here