Premium
Asymptotic‐preserving Godunov‐type numerical schemes for hyperbolic systems with stiff and nonstiff relaxation terms
Author(s) -
Berthon C.,
Chalons C.,
Turpault R.
Publication year - 2013
Publication title -
numerical methods for partial differential equations
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.901
H-Index - 61
eISSN - 1098-2426
pISSN - 0749-159X
DOI - 10.1002/num.21749
Subject(s) - mathematics , relaxation (psychology) , type (biology) , scheme (mathematics) , operator (biology) , mathematical analysis , psychology , social psychology , ecology , biochemistry , chemistry , repressor , gene , transcription factor , biology
We devise a new class of asymptotic‐preserving Godunov‐type numerical schemes for hyperbolic systems with stiff and nonstiff relaxation source terms governed by a relaxation time ε. As an alternative to classical operator‐splitting techniques, the objectives of these schemes are twofold: first, to give accurate numerical solutions for large, small, and in‐between values of ε and second, to make optional the choice of the numerical scheme in the asymptotic regime ε tends to zero. The latter property may be of particular interest to make easier and more efficient the coupling at a fixed spatial interface of two models involving very different values of ε. © 2012 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2013
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom