Premium
Local discontinuous Galerkin method for solving an N ‐carrier system
Author(s) -
Zhang Rongpei,
Yu Xijun,
Zhao Guozhong
Publication year - 2012
Publication title -
numerical methods for partial differential equations
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.901
H-Index - 61
eISSN - 1098-2426
pISSN - 0749-159X
DOI - 10.1002/num.21694
Subject(s) - discontinuous galerkin method , mathematics , norm (philosophy) , galerkin method , boundary value problem , partial differential equation , stability (learning theory) , partial derivative , mathematical analysis , finite element method , computer science , physics , thermodynamics , machine learning , political science , law
In this article, we present local discontinuous Galerkin (LDG) method for solving a model of energy exchanges in an N ‐carrier system with Neumann boundary conditions. This model extends the concept of the well‐known parabolic two‐step model for microheat transfer to the energy exchanges in a generalized N ‐carrier system with heat sources. The energy norm stability and error estimate of the LDG method is proved for solving N ‐carrier system. Some numerical examples are given. The numerical results when compared with the exact solution and other numerical results indicate that the present method is seen to be a very good alternative to some existing techniques for realistic problems. © 2011 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 2011
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom