Premium
A symmetric mixed finite element method for nearly incompressible elasticity based on biorthogonal systems
Author(s) -
Lamichhane Bishnu P.,
Stephan Ernst P.
Publication year - 2012
Publication title -
numerical methods for partial differential equations
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.901
H-Index - 61
eISSN - 1098-2426
pISSN - 0749-159X
DOI - 10.1002/num.20683
Subject(s) - mathematics , biorthogonal system , finite element method , mathematical analysis , elasticity (physics) , saddle point , discretization , saddle , linear elasticity , compressibility , estimator , partial differential equation , geometry , mathematical optimization , physics , statistics , wavelet transform , artificial intelligence , computer science , wavelet , thermodynamics
We present a symmetric version of the nonsymmetric mixed finite element method presented in (Lamichhane, ANZIAM J 50 (2008), C324–C338) for nearly incompressible elasticity. The displacement–pressure formulation of linear elasticity is discretized using a Petrov–Galerkin discretization for the pressure equation in (Lamichhane, ANZIAM J 50 (2008), C324–C338) leading to a non‐symmetric saddle point problem. A new three‐field formulation is introduced to obtain a symmetric saddle point problem which allows us to use a biorthogonal system. Working with a biorthogonal system, we can statically condense out all auxiliary variables from the saddle point problem arriving at a symmetric and positive‐definite system based only on the displacement. We also derive a residual based error estimator for the mixed formulation of the problem. © 2011 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2012