Premium
Neumann‐Neumann methods for a DG discretization on geometrically nonconforming substructures
Author(s) -
Dryja Maksymilian,
Galvis Juan,
Sarkis Marcus
Publication year - 2012
Publication title -
numerical methods for partial differential equations
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.901
H-Index - 61
eISSN - 1098-2426
pISSN - 0749-159X
DOI - 10.1002/num.20678
Subject(s) - discretization , mathematics , discontinuous galerkin method , neumann boundary condition , domain (mathematical analysis) , substructure , domain decomposition methods , mathematical analysis , order (exchange) , finite element method , combinatorics , boundary (topology) , geometry , physics , structural engineering , finance , engineering , economics , thermodynamics
A discontinuous Galerkin discretization for second order elliptic equations with discontinuous coefficients in 2D is considered. The domain of interest Ω is assumed to be a union of polygonal substructures Ω i of size O ( H i ). We allow this substructure decomposition to be geometrically nonconforming. Inside each substructure Ω i , a conforming finite element space associated to a triangulation \documentclass{article} \usepackage{mathrsfs} \usepackage{amsmath} \pagestyle{empty} \begin{document} \begin{align*} {\mathcal{T}}_{h_i}(\Omega_i)\end{align*}\end{document} is introduced. To handle the nonmatching meshes across ∂ Ω i , a discontinuous Galerkin discretization is considered. In this article, additive and hybrid Neumann‐Neumann Schwarz methods are designed and analyzed. Under natural assumptions on the coefficients and on the mesh sizes across ∂ Ω i , a condition number estimate \documentclass{article} \usepackage{mathrsfs} \usepackage{amsmath} \pagestyle{empty} \begin{document} \begin{align*} C(1 + \max_i\log \frac{H_i}{h_i})^2\end{align*}\end{document} is established with C independent of h i , H i , h i / h j , and the jumps of the coefficients. The method is well suited for parallel computations and can be straightforwardly extended to three dimensional problems. Numerical results are included. © 2011 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 2012
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom