z-logo
Premium
Two‐level discretization of the Navier‐Stokes equations with r‐Laplacian subgridscale viscosity
Author(s) -
Borggaard Jeff,
Iliescu Traian,
Roop John Paul
Publication year - 2012
Publication title -
numerical methods for partial differential equations
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.901
H-Index - 61
eISSN - 1098-2426
pISSN - 0749-159X
DOI - 10.1002/num.20673
Subject(s) - discretization , mathematics , laplace operator , nonlinear system , finite element method , navier–stokes equations , reynolds number , partial differential equation , laplacian smoothing , viscosity , turbulence , mathematical optimization , mesh generation , mathematical analysis , compressibility , mechanics , physics , quantum mechanics , thermodynamics
The r ‐Laplacian has played an important role in the development of computationally efficient models for applications, such as numerical simulation of turbulent flows. In this article, we examine two‐level finite element approximation schemes applied to the Navier‐Stokes equations with r ‐Laplacian subgridscale viscosity, where r is the order of the power‐law artificial viscosity term. In the two‐level algorithm, the solution to the fully nonlinear coarse mesh problem is utilized in a single‐step linear fine mesh problem. When modeling parameters are chosen appropriately, the error in the two‐level algorithm is comparable to the error in solving the fully nonlinear problem on the fine mesh. We provide rigorous numerical analysis of the two‐level approximation scheme and derive scalings which vary based on the coefficient r , coarse mesh size H , fine mesh size h , and filter radius δ. We also investigate the two‐level algorithm in several computational settings, including the 3D numerical simulation of flow past a backward‐facing step at Reynolds number Re = 5100. In all numerical tests, the two‐level algorithm was proven to achieve the same order of accuracy as the standard one‐level algorithm, at a fraction of the computational cost. © 2011 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2011

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here