Premium
Connections between discontinuous Galerkin and nonconforming finite element methods for the Stokes equations
Author(s) -
Becker Roland,
Capatina Daniela,
Joie Julie
Publication year - 2012
Publication title -
numerical methods for partial differential equations
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.901
H-Index - 61
eISSN - 1098-2426
pISSN - 0749-159X
DOI - 10.1002/num.20671
Subject(s) - discontinuous galerkin method , mathematics , finite element method , stokes problem , galerkin method , element (criminal law) , mathematical analysis , calculus (dental) , physics , medicine , dentistry , political science , law , thermodynamics
We study a discontinuous Galerkin finite element method (DGFEM) for the Stokes equations with a weak stabilization of the viscous term. We prove that, as the stabilization parameter γ tends to infinity, the solution converges at speed γ −1 to the solution of some stable and well‐known nonconforming finite element methods (NCFEM) for the Stokes equations. In addition, we show that an a posteriori error estimator for the DGFEM‐solution based on the reconstruction of a locally conservative H (div, Ω)‐tensor tends at the same speed to a classical a posteriori error estimator for the NCFEM‐solution. These results can be used to affirm the robustness of the DGFEM‐method and also underline the close relationship between the two approaches. © 2011 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2011
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom