z-logo
Premium
Error analysis for hybrid Trefftz methods coupling traction conditions in linear elastostatics
Author(s) -
Li ZiCai
Publication year - 2012
Publication title -
numerical methods for partial differential equations
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.901
H-Index - 61
eISSN - 1098-2426
pISSN - 0749-159X
DOI - 10.1002/num.20659
Subject(s) - mathematics , lagrange multiplier , numerical analysis , linear elasticity , error analysis , elasticity (physics) , mathematical optimization , finite element method , mathematical analysis , physics , materials science , composite material , thermodynamics
Abstract For linear elastostatics, the Lagrange multiplier to couple the displacement (i.e., Dirichlet) condition is well known in mathematics community, but the Lagrange multiplier to couple the traction (i.e., Neumann) condition is popular for elasticity problems by the Trefftz method in engineering community, which is called the Hybrid Trefftz method (HTM). However, there has not been any analysis for these Lagrange multipliers to couple the traction condition so far. New error analysis of the HTM for elasticity problems is explored in this paper, to derive error bounds with the optimal convergence rates. Numerical experiments are reported to support this analysis. The error analysis of the HTM for linear elastostatics is the main aim of this paper. In this paper, the collocation Trefftz method (CTM) without a multiplier is also introduced, accompanied with error analysis. Numerical comparisons are made for HTM and CTM using fundamental solutions (FS) and particular solutions (PS). The error analysis and numerical computations show that the accuracy of the HTM is equivalent to that of the CTM, but the stability of the CTM is good. For elasticity and other complicated problems, the simplicity of algorithms and programming grants the CTM a remarkable advantage. More numerical comparisons show that using PS is more efficient than using FS in both HTM and CTM. However, since the optimal convergence rates are the most important criterion in evaluation of numerical methods, the global performance of the HTM is as good as that of the CTM. The comparisons of HTM and CTM using FS and PS are the next aim of this article. © 2011 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2011

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here