z-logo
Premium
The method of approximate particular solutions for solving certain partial differential equations
Author(s) -
Chen C.S.,
Fan C.M.,
Wen P.H.
Publication year - 2012
Publication title -
numerical methods for partial differential equations
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.901
H-Index - 61
eISSN - 1098-2426
pISSN - 0749-159X
DOI - 10.1002/num.20631
Subject(s) - mathematics , homogeneous , numerical partial differential equations , partial differential equation , simplicity , partial derivative , scheme (mathematics) , exponential integrator , method of characteristics , differential equation , homogeneous differential equation , mathematical analysis , differential algebraic equation , ordinary differential equation , philosophy , epistemology , combinatorics
A standard approach for solving linear partial differential equations is to split the solution into a homogeneous solution and a particular solution. Motivated by the method of fundamental solutions for solving homogeneous equations, we propose a similar approach using the method of approximate particular solutions for solving linear inhomogeneous differential equations without the need of finding the homogeneous solution. This leads to a much simpler numerical scheme with similar accuracy to the traditional approach. To demonstrate the simplicity of the new approach, three numerical examples are given with excellent results. © 2010 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 28: 506–522, 2012

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom