Premium
Stabilized DDFV schemes for stokes problem with variable viscosity on general 2D meshes
Author(s) -
Krell Stella
Publication year - 2011
Publication title -
numerical methods for partial differential equations
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.901
H-Index - 61
eISSN - 1098-2426
pISSN - 0749-159X
DOI - 10.1002/num.20603
Subject(s) - mathematics , polygon mesh , finite volume method , stokes problem , norm (philosophy) , dirichlet boundary condition , dirichlet distribution , boundary value problem , conformal map , mathematical analysis , convergence (economics) , finite element method , geometry , physics , thermodynamics , political science , mechanics , law , economics , economic growth
“Discrete Duality Finite Volume” schemes (DDFV for short) on general meshes are studied here for Stokes problems with variable viscosity with Dirichlet boundary conditions. The aim of this work is to analyze the well‐posedness of the scheme and its convergence properties. The DDFV method requires a staggered scheme, the discrete unknowns, the components of the velocity and the pressure, are located on different nodes. The scheme is stabilized using a finite volume analogue to Brezzi‐Pitkäranta techniques. This scheme is proved to be well‐posed on general meshes and to be first order convergent in a discrete H 1 ‐norm and a discrete L 2 ‐norm for respectively the velocity and the pressure. Finally, numerical experiments confirm the theoretical prediction, in particular on locally refined non conformal meshes. © 2010 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 27: 1666–1706, 2011