Premium
Finite element approximation of coupled seismic and electromagnetic waves in fluid‐saturated poroviscoelastic media
Author(s) -
Santos Juan E.
Publication year - 2011
Publication title -
numerical methods for partial differential equations
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.901
H-Index - 61
eISSN - 1098-2426
pISSN - 0749-159X
DOI - 10.1002/num.20527
Subject(s) - biot number , finite element method , mathematical analysis , shear waves , boundary value problem , mathematics , polarization (electrochemistry) , porous medium , bounded function , maxwell's equations , mechanics , physics , shear (geology) , geology , porosity , geotechnical engineering , petrology , chemistry , thermodynamics
This work presents a collection of global and iterative finite element procedures for the numerical approximation of coupled seismic and electromagnetic waves in 2D bounded fluid‐saturated porous media, with absorbing boundary conditions at the artificial boundaries. The equations being analyzed are the coupled Biot's equations of motion and Maxwell equations in the diffusive range. Both seismoelectric and electroseismic coupling are simultaneously included and analyzed in the model. The case of compressional and vertically polarized shear waves coupled with the transverse magnetic polarization (PSVTM‐mode) is analyzed in detail, including the derivation of a priori error estimates on the global finite element procedure and results on the convergence of a domain decomposition iterative algorithm. Later, the corresponding results for the case of horizontally polarized shear waves coupled with the transverse electric polarization (SHTE‐mode) are stated. © 2009 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2011