Premium
A posteriori error analysis of nonconforming finite volume elements for general second‐order elliptic PDEs
Author(s) -
Yang Min
Publication year - 2011
Publication title -
numerical methods for partial differential equations
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.901
H-Index - 61
eISSN - 1098-2426
pISSN - 0749-159X
DOI - 10.1002/num.20520
Subject(s) - mathematics , a priori and a posteriori , estimator , finite element method , discretization , finite volume method , partial differential equation , discretization error , order (exchange) , mathematical analysis , statistics , thermodynamics , philosophy , physics , epistemology , finance , economics
In this article, we study the a posteriori H 1 and L 2 error estimates for Crouzeix‐Raviart nonconforming finite volume element discretization of general second‐order elliptic problems in ℝ 2 . The error estimators yield global upper and local lower bounds. Finally, numerical experiments are performed to illustrate the theoretical findings. © 2009 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2011
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom