Premium
Solving the reaction–diffusion equations with nonlocal boundary conditions based on reproducing kernel space
Author(s) -
Lin Yingzhen,
Zhou Yongfang
Publication year - 2009
Publication title -
numerical methods for partial differential equations
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.901
H-Index - 61
eISSN - 1098-2426
pISSN - 0749-159X
DOI - 10.1002/num.20409
Subject(s) - mathematics , kernel (algebra) , boundary value problem , space (punctuation) , reaction–diffusion system , mathematical analysis , diffusion , partial differential equation , boundary (topology) , function (biology) , pure mathematics , physics , computer science , evolutionary biology , biology , thermodynamics , operating system
The reaction–diffusion equations with initial condition and nonlocal boundary conditions are discussed in this article. A reproducing kernel space is constructed, in which an arbitrary function satisfies the initial condition and nonlocal boundary conditions of the reaction‐diffusion equations. Based on the reproducing kernel space, a new algorithm for solving the reaction–diffusion equations with initial condition and nonlocal boundary conditions is presented. Some examples are displayed to demonstrate the validity and applicability of the proposed method. © 2009 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2009
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom