z-logo
Premium
An efficient TVD‐WENO method for conservation laws
Author(s) -
Zahran Yousef Hashem
Publication year - 2009
Publication title -
numerical methods for partial differential equations
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.901
H-Index - 61
eISSN - 1098-2426
pISSN - 0749-159X
DOI - 10.1002/num.20408
Subject(s) - total variation diminishing , conservation law , classification of discontinuities , mathematics , robustness (evolution) , scheme (mathematics) , order of accuracy , mathematical optimization , partial differential equation , mathematical analysis , method of characteristics , biochemistry , chemistry , gene
Abstract In this article, we present a high‐resolution hybrid scheme for solving hyperbolic conservation laws in one and two dimensions. In this scheme, we use a cheap fourth order total variation diminishing (TVD) scheme for smooth region and expensive seventh order weighted nonoscillatory (WENO) scheme near discontinuities. To distinguish between the smooth parts and discontinuities, we use an efficient adaptive multiresolution technique. For time integration, we use the third order TVD Runge‐Kutta scheme. The accuracy of the resulting hybrid high order scheme is comparable with these of WENO, but with significant decrease of the CPU cost. Numerical demonstrates that the proposed scheme is comparable to the high order WENO scheme and superior to the fourth order TVD scheme. Our scheme has the added advantage of simplicity and computational efficiency. Numerical tests are presented which show the robustness and effectiveness of the proposed scheme.© 2008 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2009

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here