Premium
An optimal‐order estimate for MMOC‐MFEM approximations to porous medium flow
Author(s) -
Wang Kaixin
Publication year - 2009
Publication title -
numerical methods for partial differential equations
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.901
H-Index - 61
eISSN - 1098-2426
pISSN - 0749-159X
DOI - 10.1002/num.20397
Subject(s) - mathematics , porous medium , spurious relationship , partial differential equation , finite element method , flow (mathematics) , grid , dispersion (optics) , mathematical analysis , porosity , geometry , thermodynamics , physics , statistics , geotechnical engineering , optics , engineering
Abstract Mathematical models used to describe porous medium flow lead to coupled systems of time‐dependent partial differential equations. Standard methods tend to generate numerical solutions with nonphysical oscillations or numerical dispersion along with spurious grid‐orientation effect. The MMOC‐MFEM time‐stepping procedure, in which the modified method of characteristics (MMOC) is used to solve the transport equation and a mixed finite element method (MFEM) is used for the pressure equation, simulates porous medium flow accurately even if large spatial grids and time steps are used. In this article we prove an optimal‐order error estimate for a family of MMOC‐MFEM approximations. © 2008 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2009