z-logo
Premium
Semi‐implicit schemes for transient Navier–Stokes equations and eddy viscosity models
Author(s) -
Davis Lisa G.,
Pahlevani Faranak
Publication year - 2009
Publication title -
numerical methods for partial differential equations
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.901
H-Index - 61
eISSN - 1098-2426
pISSN - 0749-159X
DOI - 10.1002/num.20339
Subject(s) - discretization , mathematics , turbulence modeling , nonlinear system , partial differential equation , navier–stokes equations , finite element method , flow (mathematics) , mathematical analysis , turbulence , mechanics , geometry , physics , compressibility , quantum mechanics , thermodynamics
Abstract This study presents two computational schemes for the numerical approximation of solutions to eddy viscosity models as well as transient Navier–Stokes equations. The eddy viscosity model is one example of a class of Large Eddy Simulation models, which are used to simulate turbulent flow. The first approximation scheme is a first order single step method that treats the nonlinear term using a semi‐implicit discretization. The second scheme employs a two step approach that applies a Crank–Nicolson method for the nonlinear term while also retaining the semi‐implicit treatment used in the first scheme. A finite element approximation is used in the spatial discretization of the partial differential equations. The convergence analysis for both schemes is discussed in detail, and numerical results are given for two test problems one of which is the two dimensional flow around a cylinder. © 2008 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2009

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here