Premium
Using empirical Eigenfunctions and Galerkin method to two‐phase transport models
Author(s) -
Shidfar Abdollah,
Mohammadi Masoumeh
Publication year - 2007
Publication title -
numerical methods for partial differential equations
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.901
H-Index - 61
eISSN - 1098-2426
pISSN - 0749-159X
DOI - 10.1002/num.20190
Subject(s) - eigenfunction , mathematics , galerkin method , partial differential equation , nonlinear system , mathematical analysis , ordinary differential equation , basis (linear algebra) , partial derivative , differential equation , geometry , eigenvalues and eigenvectors , physics , quantum mechanics
In this article, we consider a nonlinear partial differential system describing two‐phase transports and try to recover the source term and the nonlinear diffusion term when the state variable is known at different profile times. To this end, we use a POD‐Galerkin procedure in which the proper orthogonal decomposition technique is applied to the ensemble of solutions to derive empirical eigenfunctions. These empirical eigenfunctions are then used as basis functions within a Galerkin method to transform the partial differential equation into a set of ordinary differential equations. Finally, the validation of the used method has been evaluated by some numerical examples. © 2006 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 23: 456–474, 2007