Premium
Interior numerical approximation of boundary value problems with a distributional data
Author(s) -
Babuška Ivo,
Nistor Victor
Publication year - 2006
Publication title -
numerical methods for partial differential equations
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.901
H-Index - 61
eISSN - 1098-2426
pISSN - 0749-159X
DOI - 10.1002/num.20086
Subject(s) - mathematics , sobolev space , bounded function , domain (mathematical analysis) , mathematical analysis , space (punctuation) , function space , boundary value problem , function (biology) , pure mathematics , philosophy , linguistics , evolutionary biology , biology
We study the approximation properties of a harmonic function u ∈ H 1− k (Ω), k > 0, on a relatively compact subset A of Ω, using the generalized finite element method (GFEM). If Ω = , for a smooth, bounded domain , we obtain that the GFEM‐approximation u S ∈ S of u satisfies ‖ u − u S ‖ H 1( A )≤ Ch γ ‖ u ‖ H 1− k (), where h is the typical size of the “elements” defining the GFEM‐space S and γ ≥ 0 is such that the local approximation spaces contain all polynomials of degree k + γ. The main technical ingredient is an extension of the classical super‐approximation results of Nitsche and Schatz (Applicable Analysis 2 (1972), 161–168; Math Comput 28 (1974), 937–958). In addition to the usual “energy” Sobolev spaces H 1 (), we need also the duals of the Sobolev spaces H m (), m ∈ ℤ + . © 2005 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2006
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom