z-logo
Premium
A local defect correction technique for time‐dependent problems
Author(s) -
Minero R.,
Anthonissen M. J. H.,
Mattheij R. M. M.
Publication year - 2006
Publication title -
numerical methods for partial differential equations
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.901
H-Index - 61
eISSN - 1098-2426
pISSN - 0749-159X
DOI - 10.1002/num.20078
Subject(s) - robustness (evolution) , grid , partial differential equation , mathematics , partial derivative , domain (mathematical analysis) , mathematical optimization , mathematical analysis , geometry , biochemistry , chemistry , gene
In this article a local defect correction technique for time‐dependent problems is presented. The method is suitable for solving partial differential equations characterized by a high activity, which is mainly located, at each time, in a small part of the physical domain. The problem is solved at each time step by means of a global uniform coarse grid and a local uniform fine grid. Local and global approximation are improved iteratively. Results of numerical experiments illustrate the accuracy, the efficiency, and the robustness of the method. © 2005 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2006

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom