Premium
An immersed interface method for anisotropic elliptic problems on irregular domains in 2D
Author(s) -
Dumett Miguel A.,
Keener James P.
Publication year - 2005
Publication title -
numerical methods for partial differential equations
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.901
H-Index - 61
eISSN - 1098-2426
pISSN - 0749-159X
DOI - 10.1002/num.20051
Subject(s) - mathematics , discretization , laplace operator , grid , anisotropy , diagonal , generalization , mathematical analysis , linear subspace , geometry , physics , quantum mechanics
This work is a generalization of the immersed interface method for discretization of a nondiagonal anisotropic Laplacian in 2D. This first‐order discretization scheme enforces weakly diagonal dominance of the numerical scheme whenever possible. A necessary and sufficient condition depending on the mesh size h for the existence of this scheme at an interior grid point is found in terms of the anisotropy matrix. A linear programming approach is introduced for finding the weights of the schemes. The method is tested with a parametrized family of anisotropic Poisson equations. © 2004 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2005
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom