z-logo
Premium
A Crank‐Nicolson and ADI Galerkin method with quadrature for hyperbolic problems
Author(s) -
Ganesh M.,
Mustapha K.
Publication year - 2005
Publication title -
numerical methods for partial differential equations
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.901
H-Index - 61
eISSN - 1098-2426
pISSN - 0749-159X
DOI - 10.1002/num.20027
Subject(s) - mathematics , partial derivative , quadrature (astronomy) , crank–nicolson method , partial differential equation , boundary value problem , hyperbolic partial differential equation , galerkin method , scheme (mathematics) , mathematical analysis , finite element method , physics , electrical engineering , engineering , thermodynamics
We propose, analyze, and implement fully discrete two‐time level Crank‐Nicolson methods with quadrature for solving second‐order hyperbolic initial boundary value problems. Our algorithms include a practical version of the ADI scheme of Fernandes and Fairweather [SIAM J Numer Anal 28 (1991), 1265–1281] and also generalize the methods and analyzes of Baker [SIAM J Numer Anal 13 (1976), 564–576] and Baker and Dougalis [SIAM J Numer Anal 13 (1976), 577–598]. © 2004 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2005

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom