Premium
An expanded mixed covolume method for elliptic problems
Author(s) -
Rui Hongxing,
Lu Tongchao
Publication year - 2005
Publication title -
numerical methods for partial differential equations
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.901
H-Index - 61
eISSN - 1098-2426
pISSN - 0749-159X
DOI - 10.1002/num.20024
Subject(s) - superconvergence , mathematics , partial differential equation , finite element method , norm (philosophy) , elliptic partial differential equation , partial derivative , order (exchange) , mathematical analysis , physics , political science , law , thermodynamics , finance , economics
We consider the mixed covolume method combining with the expanded mixed element for a system of first‐order partial differential equations resulting from the mixed formulation of a general self‐adjoint elliptic problem with a full diffusion tensor. The system can be used to model the transport of a contaminant carried by a flow in porous media. We use the lowest order Raviart‐Thomas mixed element space. We show the first‐order error estimate for the approximate solution in L 2 norm. We show the superconvergence both for pressure and velocity in certain discrete norms. We also get a finite difference scheme by using proper approximate integration formulas. Finally we give some numerical examples. © 2004 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2005
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom