z-logo
Premium
An O ( h 6 ) cubic spline interpolating procedure for harmonic functions
Author(s) -
Papamichael N.,
Soares Maria Joana
Publication year - 1991
Publication title -
numerical methods for partial differential equations
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.901
H-Index - 61
eISSN - 1098-2426
pISSN - 0749-159X
DOI - 10.1002/num.1690070105
Subject(s) - monotone cubic interpolation , mathematics , spline interpolation , interpolation (computer graphics) , cubic hermite spline , spline (mechanical) , cubic function , mathematical analysis , box spline , harmonic , a priori and a posteriori , thin plate spline , bicubic interpolation , statistics , bilinear interpolation , classical mechanics , physics , thermodynamics , philosophy , epistemology , quantum mechanics , motion (physics)
An O (h 6 ) method for the interpolation of harmonic functions in rectangular domains is described and analyzed, The method is based on an earlier cubic spline technique [N. Papamichael and J.R. Whiteman, BIT 14 , 452–459 (1974)], and makes use of recent results concerning the a posteriori correction of interpolatory cubic splines.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here