Premium
An O ( h 6 ) cubic spline interpolating procedure for harmonic functions
Author(s) -
Papamichael N.,
Soares Maria Joana
Publication year - 1991
Publication title -
numerical methods for partial differential equations
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.901
H-Index - 61
eISSN - 1098-2426
pISSN - 0749-159X
DOI - 10.1002/num.1690070105
Subject(s) - monotone cubic interpolation , mathematics , spline interpolation , interpolation (computer graphics) , cubic hermite spline , spline (mechanical) , cubic function , mathematical analysis , box spline , harmonic , a priori and a posteriori , thin plate spline , bicubic interpolation , statistics , bilinear interpolation , classical mechanics , physics , thermodynamics , philosophy , epistemology , quantum mechanics , motion (physics)
An O (h 6 ) method for the interpolation of harmonic functions in rectangular domains is described and analyzed, The method is based on an earlier cubic spline technique [N. Papamichael and J.R. Whiteman, BIT 14 , 452–459 (1974)], and makes use of recent results concerning the a posteriori correction of interpolatory cubic splines.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom