Premium
Fourth‐order accurate one‐step integration methods with large imaginary stability limits
Author(s) -
Kinnmark Ingemar P. E.,
Gray William G.
Publication year - 1986
Publication title -
numerical methods for partial differential equations
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.901
H-Index - 61
eISSN - 1098-2426
pISSN - 0749-159X
DOI - 10.1002/num.1690020106
Subject(s) - mathematics , stability (learning theory) , the imaginary , limit (mathematics) , order (exchange) , function (biology) , runge–kutta methods , mathematical analysis , calculus (dental) , differential equation , computer science , medicine , psychology , dentistry , finance , machine learning , evolutionary biology , economics , psychotherapist , biology
One‐step integration methods of fourth‐order accuracy using an odd number of function evaluations K , to solve dy/dt = A · y , are proposed. These methods have an imaginary stability limit \documentclass{article}\pagestyle{empty}\begin{document}$ S_{1\;} = \sqrt {(K - 1)^2 - 4} $\end{document} . In the case K = 5 the Kutta‐Merson method results.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom