z-logo
Premium
Mixed and hybrid formulations for the three‐dimensional magnetostatic problem
Author(s) -
Daveau C.,
Laminie J.
Publication year - 2002
Publication title -
numerical methods for partial differential equations
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.901
H-Index - 61
eISSN - 1098-2426
pISSN - 0749-159X
DOI - 10.1002/num.1045
Subject(s) - mathematics , finite element method , dirichlet distribution , mathematical analysis , neumann boundary condition , boundary value problem , dirichlet boundary condition , scalar (mathematics) , magnetic field , dirichlet problem , geometry , physics , quantum mechanics , thermodynamics
We propose mixed and hybrid formulations for the three‐dimensional magnetostatic problem. Such formulations are obtained by coupling finite element method inside the magnetic materials with a boundary element method. We present a formulation where the magnetic field is the state variable and the boundary approach uses a scalar Dirichlet‐Neumann map to describe the exterior domain. Also, we propose a second formulation where the magnetic induction is the state variable and a vectorial Dirichlet‐Neumann map is used to describe the outer field. Numerical discretizations with “edge” and “face” elements are proposed, and for each discrete problem we study an “inf‐sup” condition. © 2002 John Wiley & Sons, Inc. Numer Methods Partial Differential Eq 18: 85–104, 2002

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom