z-logo
Premium
A stabilized volume‐averaging finite element method for flow in porous media and binary alloy solidification processes
Author(s) -
Zabaras Nicholas,
Samanta Deep
Publication year - 2004
Publication title -
international journal for numerical methods in engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.421
H-Index - 168
eISSN - 1097-0207
pISSN - 0029-5981
DOI - 10.1002/nme.998
Subject(s) - finite element method , porous medium , mathematics , galerkin method , mechanics , control volume , finite volume method , binary alloy , representative elementary volume , mathematical analysis , porosity , materials science , thermodynamics , physics , alloy , composite material
A stabilized equal‐order velocity–pressure finite element algorithm is presented for the analysis of flow in porous media and in the solidification of binary alloys. The adopted governing macroscopic conservation equations of momentum, energy and species transport are derived from their microscopic counterparts using the volume‐averaging method. The analysis is performed in a single domain with a fixed numerical grid. The fluid flow scheme developed includes SUPG (streamline‐upwind/Petrov–Galerkin), PSPG (pressure stabilizing/Petrov–Galerkin) and DSPG (Darcy stabilizing/Petrov–Galerkin) stabilization terms in a variable porosity medium. For the energy and species equations a classical SUPG‐based finite element method is employed. The developed algorithms were tested extensively with bilinear elements and were shown to perform stably and with nearly quadratic convergence in high Rayleigh number flows in varying porosity media. Examples are shown in natural and double diffusive convection in porous media and in the directional solidification of a binary‐alloy. Copyright © 2004 John Wiley & Sons, Ltd.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here