Premium
On a method for vibration analysis of viscous compressible fluid–structure systems
Author(s) -
Mokeyev Vladimir V.
Publication year - 2004
Publication title -
international journal for numerical methods in engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.421
H-Index - 168
eISSN - 1097-0207
pISSN - 0029-5981
DOI - 10.1002/nme.930
Subject(s) - compressible flow , compressibility , fluid–structure interaction , superposition principle , eigenvalues and eigenvectors , viscous liquid , vibration , mathematics , viscosity , finite element method , modal analysis , fluid dynamics , mechanics , mathematical analysis , physics , classical mechanics , thermodynamics , acoustics , quantum mechanics
A fluid–structure interaction formulation for viscous compressible fluid is under consideration. The formulation involves finite element approximation of linearized Navier–Stokes equations and response determination made by means of modal superposition analysis. Standard and simplified schemes of the viscous compressible fluid–structure interaction problem solution are developed. The schemes are based on the frequency condensation method of a complex eigenvalue problem solving. Free and forced oscillations of several fluid–structure systems are studied by the standard and simplified schemes. The analysis of the results obtained shows that the simplified scheme provides a saving of 90% of the computational time required to define oscillation of the structure with viscous compressible fluid in the lowest frequency range. A certain influence of the fluid viscosity on the transient response of the fluid–structure system is also demonstrated. Copyright © 2004 John Wiley & Sons, Ltd.